Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biomed Pharmacother ; 157: 113977, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2238314

RESUMEN

COVID-19 is a worldwide pandemic caused by SARS-coronavirus-2 (SARS-CoV-2). Less than a year after the emergence of the Covid-19 pandemic, many vaccines have arrived on the market with innovative technologies in the field of vaccinology. Based on the use of messenger RNA (mRNA) encoding the Spike SARS-Cov-2 protein or on the use of recombinant adenovirus vectors enabling the gene encoding the Spike protein to be introduced into our cells, these strategies make it possible to envisage the vaccination in a new light with tools that are more scalable than the vaccine strategies used so far. Faced with the appearance of new variants, which will gradually take precedence over the strain at the origin of the pandemic, these new strategies will allow a much faster update of vaccines to fight against these new variants, some of which may escape neutralization by vaccine antibodies. However, only a vaccination policy based on rapid and massive vaccination of the population but requiring a supply of sufficient doses could make it possible to combat the emergence of these variants. Indeed, the greater the number of infected individuals, the faster the virus multiplies, with an increased risk of the emergence of variants in these RNA viruses. This review will discuss SARS-CoV-2 pathophysiology and evolution approaches in altered transmission platforms and emphasize the different mutations and how they influence the virus characteristics. Also, this article summarizes the common vaccines and the implication of the mutations and genetic variety of SARS-CoV-2 on the COVID-19 biomedical arbitrations.

2.
Cell Signal ; 103: 110559, 2023 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2158569

RESUMEN

The COVID-19 pandemic has triggered intensive research and development of drugs and vaccines against SARS-CoV-2 during the last two years. The major success was especially observed with development of vaccines based on viral vectors, nucleic acids and whole viral particles, which have received emergent authorization leading to global mass vaccinations. Although the vaccine programs have made a big impact on COVID-19 spread and severity, emerging novel variants have raised serious concerns about vaccine efficacy. Due to the urgent demand, drug development had originally to rely on repurposing of antiviral drugs developed against other infectious diseases. For both drug and vaccine development the focus has been mainly on SARS-CoV-2 surface proteins and host cell receptors involved in viral attachment and entry. In this review, we expand the spectrum of SARS-CoV-2 targets by investigating the COVID-19 signalome. In addition to the SARS-CoV-2 Spike protein, the envelope, membrane, and nucleoprotein targets have been subjected to research. Moreover, viral proteases have presented the possibility to develop different strategies for the inhibition of SARS-CoV-2 replication and spread. Several signaling pathways involving the renin-angiotensin system, angiotensin-converting enzymes, immune pathways, hypoxia, and calcium signaling have provided attractive alternative targets for more efficient drug development.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19/metabolismo , Pandemias/prevención & control , Receptores Virales/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico
3.
Cell Signal ; 101: 110495, 2023 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2068757

RESUMEN

The COVID-19 pandemic has been the focus of research the past two years. The major breakthrough was made by discovering pathways related to SARS-CoV-2 infection through cellular interaction by angiotensin-converting enzyme (ACE2) and cytokine storm. The presence of ACE2 in lungs, intestines, cardiovascular tissues, brain, kidneys, liver, and eyes shows that SARS-CoV-2 may have targeted these organs to further activate intracellular signalling pathways that lead to cytokine release syndrome. It has also been reported that SARS-CoV-2 can hijack coatomer protein-I (COPI) for S protein retrograde trafficking to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), which, in turn, acts as the assembly site for viral progeny. In infected cells, the newly synthesized S protein in endoplasmic reticulum (ER) is transported first to the Golgi body, and then from the Golgi body to the ERGIC compartment resulting in the formation of specific a motif at the C-terminal end. This review summarizes major events of SARS-CoV-2 infection route, immune response following host-cell infection as an important factor for disease outcome, as well as comorbidity issues of various tissues and organs arising due to COVID-19. Investigations on alterations of host-cell machinery and viral interactions with multiple intracellular signaling pathways could represent a major factor in more effective disease management.


Asunto(s)
COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Síndrome de Liberación de Citoquinas , Comorbilidad
4.
Molecules ; 27(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1686898

RESUMEN

Cancer is the second most fatal disease worldwide, with colon cancer being the third most prevalent and fatal form of cancer in several Western countries. The risk of acquisition of resistance to chemotherapy remains a significant hurdle in the management of various types of cancer, especially colon cancer. Therefore, it is essential to develop alternative treatment modalities. Naturally occurring alkaloids have been shown to regulate various mechanistic pathways linked to cell proliferation, cell cycle, and metastasis. This review aims to shed light on the potential of alkaloids as anti-colon-cancer chemotherapy agents that can modulate or arrest the cell cycle. Preclinical investigated alkaloids have shown anti-colon cancer activities and inhibition of cancer cell proliferation via cell cycle arrest at different stages, suggesting that alkaloids may have the potential to act as anticancer molecules.


Asunto(s)
Alcaloides/química , Alcaloides/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Alcaloides/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Descubrimiento de Drogas , Humanos
5.
Viruses ; 13(10)2021 09 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1438747

RESUMEN

Recently, two cases of complete remission of classical Hodgkin lymphoma (cHL) and follicular lymphoma (FL) after SARS-CoV-2 infection were reported. However, the precise molecular mechanism of this rare event is yet to be understood. Here, we hypothesize a potential anti-tumor immune response of SARS-CoV-2 and based on a computational approach show that: (i) SARS-CoV-2 Spike-RBD may bind to the extracellular domains of CD15, CD27, CD45, and CD152 receptors of cHL or FL and may directly inhibit cell proliferation. (ii) Alternately, upon internalization after binding to these CD molecules, the SARS-CoV-2 membrane (M) protein and ORF3a may bind to gamma-tubulin complex component 3 (GCP3) at its tubulin gamma-1 chain (TUBG1) binding site. (iii) The M protein may also interact with TUBG1, blocking its binding to GCP3. (iv) Both the M and ORF3a proteins may render the GCP2-GCP3 lateral binding where the M protein possibly interacts with GCP2 at its GCP3 binding site and the ORF3a protein to GCP3 at its GCP2 interacting residues. (v) Interactions of the M and ORF3a proteins with these gamma-tubulin ring complex components potentially block the initial process of microtubule nucleation, leading to cell-cycle arrest and apoptosis. (vi) The Spike-RBD may also interact with and block PD-1 signaling similar to pembrolizumab and nivolumab- like monoclonal antibodies and may induce B-cell apoptosis and remission. (vii) Finally, the TRADD interacting "PVQLSY" motif of Epstein-Barr virus LMP-1, that is responsible for NF-kB mediated oncogenesis, potentially interacts with SARS-CoV-2 Mpro, NSP7, NSP10, and spike (S) proteins, and may inhibit the LMP-1 mediated cell proliferation. Taken together, our results suggest a possible therapeutic potential of SARS-CoV-2 in lymphoproliferative disorders.


Asunto(s)
COVID-19/metabolismo , Linfoma/inmunología , SARS-CoV-2/inmunología , Anticuerpos Monoclonales/inmunología , Antineoplásicos/farmacología , Sitios de Unión , COVID-19/complicaciones , Glicoproteínas/metabolismo , Glicoproteínas/ultraestructura , Humanos , Inmunidad/inmunología , Linfoma/terapia , Linfoma/virología , Modelos Teóricos , Simulación del Acoplamiento Molecular , Unión Proteica , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/ultraestructura , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/ultraestructura
6.
J Med Virol ; 93(5): 2815-2819, 2021 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1196513

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is a Betacoronavirus that results in a severe fatal respiratory disease; however, it is also associated with mild inapparent infections. The western part of the Kingdom of Saudi Arabia (KSA) contains the holy places where millions of Muslims gathered from all over the world, all year round, with a high probability of mass disease transmission. The aim of this study was to estimate the prevalence of MERS-CoV among military personnel and their families during the period 2014-2019, in the western part of the KSA. A total of 35,203 sputum samples collected from patients with respiratory distress were screened for the presence of MERS-CoV using real-time reverse-transcription polymerase chain reaction in the examined patients. MERS-CoV infections were detected at a very low percentage in the examined patients. Only 42 of the examined subjects (0.12%) were found positive for MERS-CoV. Most infected cases (32/42) cases were detected in 2014, and the rest of the cases were reported in 2015-2019. The cases with fatal consequences (n = 20) were only detected in 2014. It was concluded that there is a very low prevalence of MERS-CoV infections among the military personnel and their families.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Personal Militar , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Prevalencia , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Síndrome de Dificultad Respiratoria/epidemiología , Arabia Saudita/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA